

SUMMARY

▶ A PBPK model for BDCM has been developed that will be

further parameterized and calibrated for humans using in vivo

▶ Human volunteer studies have demonstrated that much higher blood levels of BDCM occurred following dermal

New enzymes have been shown to metabolize BrTHMs.

▶ A genotoxic metabolic pathway for BrTHMs has been

discovered that is mediated by glutathione S-transferase theta 1-1. This pathway produces intermediates that covalently bind DNA (specifically producing deoxyguanosine adducts), thus

▶ Similar kinetics of CYP2E1- and GST T1-1-mediated BDCM metabolism in rats and humans suggest that the rat is a

▶ Recent findings suggest that the metabolites derived from BrTHMs via the GST pathway are more mutagenic than those

produced by methylene chloride. The rate of BrTHM-GSH conjugation is, however, less than that of methylene chloride.

Additional metabolites have now been identified as products

of BrTHM-GSH reactions, including S-formyl-GSH and

➤ Target tissues for BDCM-induced carcinomas have higher

IMPACT

▶ The PBPK model for bromodichloromethane can be used

for interspecies, route-to-route, and high-to-low dose

extrapolation for risk assessment. The generation of in vivo

human data provides a unique opportunity to calibrate the

model and test the predictive utility of kinetic parameters

▶ Pharmacokinetic and mutagenicity findings indicate that the BrTHMs are of greater concern as potential human

▶ Brominated THMs are activated to mutagens by the GST

T1-1 enzyme, which is polymorphically expressed in humans

and may therefore be an important determinant of

susceptibility to the genotoxic and potential carcinogenic

These include CYP1A2, CYP3A4, CYP2A6, and GST T1-1.

and in vitro human pharmacokinetic data.

exposures than after drinking water exposures.

leading to gene mutations.

relevant animal model for BDCM.

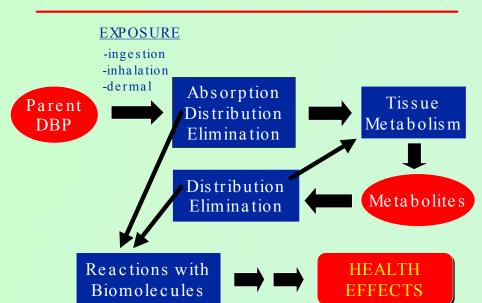
ratios of GST T1-1:CYP2E1 activity.

derived from *in vitro* experiments

carcinogens than is chloroform.

effects of brominated THMs.

Drinking Water Disinfection Byproduct Pharmacokinetics: Linking Brominated Trihalomethane Exposure to Health Effects

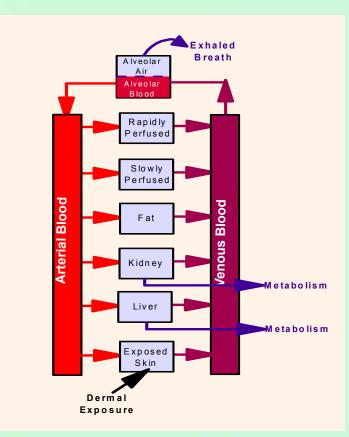

Rex A. Pegram^{1a}, Matthew K. Ross², Teresa L. Leavens^{1b}, John W. Allis^{1a}, Larry D. Claxton^{1c}, Guangyu Zhao², Ben C. Blount³, Tracey M. Ross^{1a}, and Sarah H. Warren^{1c}

¹National Health and Environmental Effects Research Laboratory, Office of Research Triangle Park, NC; ^aExperimental Toxicology Division, ^bHuman Studies Division, ^cEnvironmental Carcinogenesis Division; Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC; Centers for Disease Control, Atlanta, GA

Key Issues for Brominated THMs

- BrTHMs are among the most prevalent disinfection byproducts (DBPs) in drinking water
- Bromodichloromethane is the most potent carcinogen among the THMs in rodents
- Colon and renal carcinomas in rats Kidney and liver tumors in mice
- Concordance of epidemiological and animal research findings (colon cancer and reproductive toxicity)
- Mutagenicity/genotoxicity of BrTHMs: -GSH-dependent metabolic pathway
- Identification and description of pharmacokinetics and key events/pathways
- Compare rodents and humans

DBP PHARMACOKINETICS



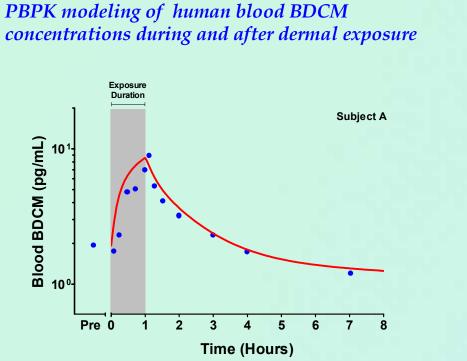
RESEARCH OBJECTIVES

- Development of physiologically based pharmacokinetic (PBPK) models for bromodichloromethane (BDCM).
- Evaluate BDCM pharmacokinetics in humans, including in vivo exposures and in vitro metabolism by key enzymes.
- Characterize the mutagenic glutathione transferase theta pathway, including studies of the DNA reactivity of intermediates.
- Assess the relationship of CYP2E1 and GST T1-1 as competing pathways in target tissues for BDCMinduced cancer.

PHYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODELING FOR BROMODICHLOROMETHANE

Selected PBPK model parameters for BDCM and chloroform

Parameter	BDCM	Chloroform*	
Partition Coefficients			
Fat/Air	526	203	
Live r/Air	30.6	21.1	
Metabolic Constants			
V _{maxc} (mg/hr/kg)	12.8	6.8	
K _m (mg/L)	0.5	0.5	


*Corley et al. (1990) Toxicol. Appl. Pharmacol. 103, 512.

BDCM Rat Model Summary

- Higher partition coefficients demonstrate greater tissue uptake of BDCM compared to chloroform
- BDCM is metabolized to reactive intermediates at a faster rate than chloroform
- The model was able to accurately predict:
- Blood and tissue concentrations of BDCM after oral and inhalation dosing
- Metabolite (bromide ion) production after dosing

BROMODICHLOROMETHANE PHARMACOKINETICS IN HUMANS

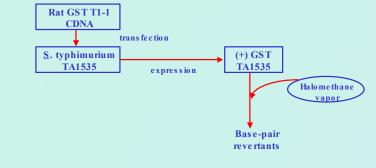
In Vivo Exposure Summary

- Volunteers were exposed either dermally or orally to water containing BDCM at a level normally found in finished drinking water.
- Significantly higher blood concentrations of BDCM were attained with dermal exposure than with oral consumption (40 -100 -fold difference).
- An initial PBPK modeling effort was able to predict the blood concentration profile.

IN VITRO METABOLISM

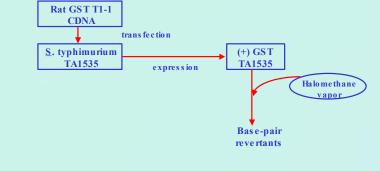
Summary of Metabolic Constants for Recombinant Cytochrome P450's

Isoenzyme	Metabolic Parametera				
	Human		Rat		
	Km	k _{cat}	Km	k _{cat}	
CYP2E1	3.5 (0.5)	2.3 (0.1)	4.6 (0.3)	3.5 (0.1)	
CYP1A2	94 (29)	4.6 (0.7)	355 (109)	19.8 (4.4)	
CYP2A6	206 (62)	1.4 (0.3)	b 	<u></u>	
CYP3A4	238 (44)	16.6 (1.9)		_	
CYP2B1	_	_	127 (16)	0.89 (0.06)	

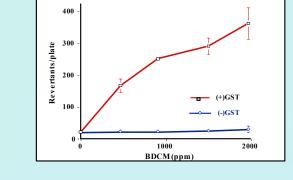

- ^a Units of Km and k_{cot} are μ M and mol BDCM·(mol P450·min)-1 respectively.
- We discovered that CYP1A2, CYP3A4, and CYP2A6 also metabolize BDCM.

• The kinetics of CYP2E1- mediated BDCM metabolism are similar in humans and rats.

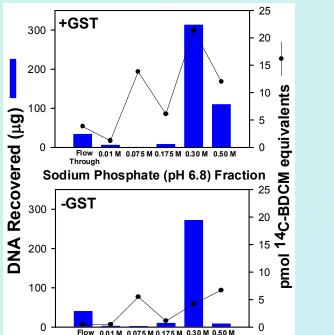
• BDCM was not metabolized by human CYPs 2B6 and 2D6 or by rat CYPs 3A1 and 2C11.


DISCOVERY AND CHARACTERIZATION OF A GENOTOXIC METABOLIC PATHWAY FOR BROMINATED THMs

Mutagenicity Assay System

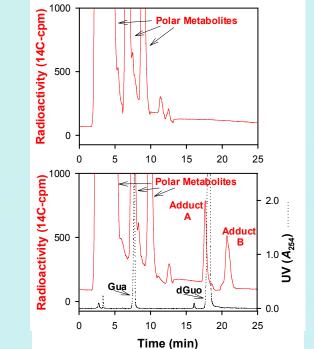

- BrTHMs, but not chloroform, are metabolized to mutagens by the
- CHBr Cl and CHBr are more potent mutagens in this assay than BDCM.
- The GST T1-1 enzyme required for the pathway is present in humans; it is
- Expression may determine susceptibility

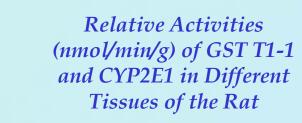
GSH S-transferase Salmonella TA1535

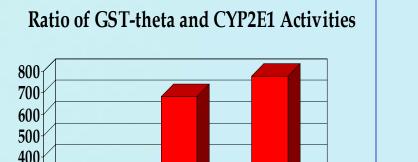

- GST-theta enzyme.
- Relative potency corresponds with ability to induce preneoplastic colon lesions
- These gene mutations are very specific: $GC \rightarrow AT$ transitions

Revertants produced in Salmonella TA1535 (+)GST and (-)GST with BDCM and chloroform

- polymorphically expressed in people
- Human enzyme expressed in urinary and GI tracts


GST T1-1-Dependent DNA Binding by BDCM


 Hydroxyapatite chromatography demonstrated that DNA was covalently modified in vitro by GST theta-mediated metabolism of ¹⁴C-BDCM.

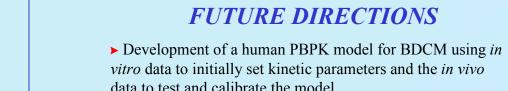

Sodium Phosphate (pH 6.8) Fraction

GST T1-1-Catalyzed Formation Of Deoxyguanosine Adducts

• Formation of adducts A and B was dependent on the presence of dGuo and GSH; adduct B was completely dependent on GST T1-1.

Kidney

Tissue


This graph demonstrates that higher

ratios of GST theta:CYPE1 activities are

found in the cancer target tissues (kidney

and colon) for BDCM in rats than in the

liver, where no cancers were induced by

- data to test and calibrate the model ► Assess DNA reactivity of the other brominated THMs
- ▶ Relate covalent modification of DNA by BrTHMs in cancer target tissues to metabolic rates
- ▶ BrTHM pharmacokinetic studies relevant to reproductive endpoints, including pregnancy loss in nonhuman primates
- ▶ Pharmacokinetic studies of nitrohalomethanes, a new potent genotoxic class of DBPs generated by chloramination

SOLVING AGENCY PROBLEMS